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Relativistic plasma with two charge species and radiation at thermodynamic equilibrium is a general system
of interest in astrophysics and high-energy physics. We develop a self-consistent quasiparticle model for such
a system to take account of the collective behavior of plasma, and thermodynamic properties are derived. It is
applied to the ultrarelativistic electron-positron plasma and compared with previous results.
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I. INTRODUCTION

A typical electrodynamic plasma of interest in astrophys-
ics �1� consists of electrons, positrons, and photons �e, e+, ��
at thermodynamic equilibrium. Since it is a plasma medium,
individual particle properties are modified by the collective
effects of plasma. One way to take account of this effect is to
use a quasiparticle model. Just as in the Debye theory of
specific heats or the theory of liquid helium, etc., the thermal
properties of the medium may be viewed as a result of ther-
mal excitations or quasiparticles, like plasmons and dressed
photons, as a result of the quantization of plasma waves and
electromagnetic waves in plasma. The standard procedure is
to obtain the classical dispersion relations for plasma or elec-
tromagnetic waves in plasma and on their quantization, we
get quasi-particles, namely quasi-fermions �corresponding to
e, e+� and quasi-bosons like dressed photons. We study the
statistical mechanics and thermodynamics of such a system
of quasi-particles. One such study was attempted by
Medvedev �1� which we modify and correct it to get the
present model.

In passing, it can be noted that another ultrarelativistic
system which can be analyzed in a similar fashion is the
quark-gluon plasma �QGP�. QGP is made up of quarks and
gluons �2�, governed by a strong interaction called quantum
chromodynamics �QCD�. It is similar to the �e, e+, �� system
with electrons �positrons� replaced by quarks �antiquarks�
and photons by gluons. This kind of study for QGP was first
attempted by Peshier et al. �3�, and later it was modified
�with corrections� and studied by others �4–6�. What is pre-
sented here for the electron-positron-� plasma is similar in
spirit to that QGP work.

II. QUASIPARTICLE MODEL OF PLASMA

Both systems we discussed are highly relativistic, and
hence we develop here a quasiparticle model for such ul-
trarelativistic systems. We assume that the collective excita-
tion of plasma leads to a system of noninteracting quasifer-
mions and quasibosons, obeying Fermi and Bose statistics,
respectively. Following the standard statistical mechanics
�7�, the density of quasiparticles may be written as

n =
1

V
�

k

1

z−1e��k � 1
→

gf

2�2�
0

�

dkk2 1

z−1e��k � 1
, �1�

where z is the fugacity and � refers to bosons and fermions.
gf is the degeneracy associated with the internal degrees of

freedom. Here �k is the energy of a quasiparticle which
may be obtained from the classical approximate dispersion
relation as

�k = � �k2c2 + 	p
2 �2�

for bosons and

�k = � �k2c2 + 	p
2 �3�

for fermions. These forms of energy-momentum relations are
widely used in quasiparticle models of QGP �3,4� with 	p

2

replaced by temperature-dependent masses, which they ob-
tain from finite-temperature field theory calculations in an
ideal thermal bath. The general expressions for �k are very
complicated even at the high-momentum limit and so, fol-
lowing Medvedev �1�, we approximate them to the above
simpler equations with an error of about 3%. Here c is the
speed of light and � is Planck-constant. The ultrarelativistic
plasma frequency �i.e., in the approximation that the thermal
energy is far greater than the species rest energy� is 	p, given
by

	p
2 =

8�e2nec
2

3T
� a

ne

T
, �4�

for the �e, e+, �� system �Eq. �3� of �1��. As usual, e is the
charge and ne the electron density which is also equal to the
positron density for a system with chemical potential equal
to zero. In quasiparticle models, by definition, the electron
density is same as that of quasielectrons. T is the temperature
of the system.

III. (e, e+, �) SYSTEM

Let us consider a �e, e+, �� system with chemical potential
zero, or z=1, and the density of quasielectrons is

ne =
ge

2�2�
0

�

dkk2 1

e���k2c2+ane/T + 1
, �5�

which may be rewritten as

ne =
ge

2�2	 T

�c

3�

0

�

dxx2 1

e
�x2+a�2ne/T3

+ 1
. �6�

The density of positrons is same as that of electrons. Simi-
larly, the density of quasiphotons may be written as
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, �7�

where the fugacity is 1 for photons. These equations need to
be solved self-consistently because the value of ne which is
to be determined is inside the integral �through 	p�. Redefin-
ing the variables, the final equation to be solved self-
consistently is, after expanding the denominator and making
the well-known change of variables, x / �ā fe�=sinh�t�, and
employing the well-known integral representation for the
modified Bessel function Kn, one obtains

fe
2 = �

0
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�x2+ā2fe

2
+ 1

= ā2fe
2�
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�8�

where

ā2 �
4ge
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and

fe
2 �

2�2��c�3

ge

ne

T3 . �9�


 is the usual fine-structure constant �e2 / �c�. �The l=1 term
is the usual relativistic Maxwellian normalization factor.�
Once we know ne or fe

2, we can obtain the photon density
from the relation
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which follows from Eq. �7�. Similarly, the energy densities
are given by
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in terms of modified Bessel functions K1 ,K2, for electrons,
and
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for photons. The blackbody Planck’s distribution may be eas-
ily read from Eq. �13� as

d���x� =
g�

2�2

T4

��c�3x2
�x2 − ā2fe

2

ex − 1
dx , �15�

where x� �	 /T. Thus Planck’s distribution is modified for
the nonzero value of ā due to plasma with a cutoff frequency
related to the plasma frequency.

On taking the limit a→0 in Eqs. �6� and �7�, we get

ne = 2��3�
ge

2�2	 T
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3

and

n� = 2�3�
g�

2�2	 T
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3

,

where �3� is a Riemann zeta function and has a value ap-
proximately 1.202 and ��3� is the sum of the alternating-sign
reciprocal cubes of the integers, being related to �3� by
��3�= �1−21−3��3�= 3

4�3�. Hence ne and n� are related as
ne= 3

4n� as expected for ideal gas. Note that in the earlier
calculations �1�, the starting point of the formalism was
ne= 7

8n�, which is not necessarily correct, since it is an ideal
gas relation which need not be true for the nonideal system
under consideration. In the method of this work one does not
require such ad hoc relations between ne and n�; instead,
both of them are calculated self-consistently by solving the
coupled integral equations �6� and �7�.

Other thermodynamic functions, like pressure, may be ob-
tained from the thermodynamic relation

� = T
�P

�T
− P , �16�

which on integration gives P= 1
3�, the same as that of ideal

relativistic gas. Again this result also differs from Ref. �1�
where their expression for pressure is not valid for massive
particles. It is interesting to look at the expression for plasma
frequency from Eq. �4�, together with the second equation
defining fe, Eq. �9�. Approximating the value of ne in the

TABLE I. Various thermodynamic quantities of the �e, e+, �� system from our model with plasma and
without plasma.

Medium fe
2 ne��T / �c�3� n���T / �c�3� �e�T4 / ��c�3� ���T4 / ��c�3�

Plasma 1.79925 0.18230 0.24164 0.57527 0.65705

Vacuum 1.80309 0.18254 0.24339 0.57526 0.65744
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limit as the value of a tends to zero �given just after Eq. �15��
one arrives at the first estimate of the plasma frequency,
given on the right-hand side of Eq. �17�,

	p
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,

�17�

where we took fe
2�2��3�= 3

2�3�, the value obtained for
the limit of a tending to zero. If we express 	p

2, Eq. �17�, in
natural units ��=1, c=1, 
=e2 / �4���, it reduces to

�
�3�

�2 e2T2. It is very close to 1
9e2T2, obtained from the finite-

temperature field theory calculations �8�, but note that it is
not exactly equal because of our self-consistent calculations.

IV. RESULTS AND CONCLUSIONS

For the �e, e+, �� system we recalculated various thermo-
dynamical quantities, reported in Ref. �1�, using our model
with proper corrections. The departure of these quantities
from that of an ideal system is too small to be noticed visu-
ally, and they are tabulated in Table I. In Table I the row
indicated “Vacuum” presents the zeroth order or the approxi-
mation of negligible rest energy for the dressed fermions and
bosons—i.e., ignoring the second term in the square roots of
Eqs. �6�, �7�, �11�, and �13� for �respectively� ne �and fe�, n�,
�e, and ��. The row marked “Plasma” shows the result of
iteration using the results of Eqs. �8�, �10�, �12�, and �14� for
fe �and ne�, n�, �e, and ��. Planck’s distribution in plasma is
plotted in Fig. 1 along with Planck’s distribution in the ab-
sence of plasma, qualitatively similar results as in Ref. �1�
with a cutoff in the distribution, etc. But note that the nu-
merical values differ and our values listed in Table I with
plasma are smaller than without plasma. Just the opposite
tendency was seen in Ref. �1�, which we believe is due to the
somewhat ad hoc assumptions used.

In conclusion, we have formulated a self-consistent qua-
siparticle model to describe the thermodynamics �TD� of
relativistic plasma, like �e, e+, ��. The basic idea is that be-
cause of the collective behavior of plasma, the TD of such a
system may be obtained by studying the TD of quasiparticles
which are thermally excited quanta of plasma and electro-
magnetic waves in plasma. This is equivalent to a system of
bosons and fermions with mass proportional to plasma fre-
quency. The plasma frequency depends on the number den-
sity, a TD quantity, which we want to find out and hence a
self-consistent problem to be solved. �The temperature effect
on the mass for the ultrarelativistic case is that given explic-
itly in Eq. �4� and needs no further calculation.� For the �e,
e+, �� system, studied earlier by Medvedev �1�, the results
obtained here are only slightly different. The reason for the
fact that the small deviations from the zeroth-order approxi-
mations are of the opposite sign to those of Medvedev is still
to be investigated.
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FIG. 1. Normalized Planck’s distribution u�x� with plasma
�solid line� and without plasma �dashed line� as a function of
x� �	 /T. The vertical line with arrow is at the cutoff frequency.
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